Unit 2 Test Review

The Components of GDP Real versus Nominal GDP Inflation
The Consumer Price Index (CPI)
Real Interest Rate Business Cycles Unemployment

Recall: GDP is total spending. (expenditure) aFour components:

Consumption (C)
Investment (I)
Government Purchases (G)
Net Exports (NX)
a These components add up to GDP (denoted Y):
Y = C + I + G + NX

Consumption (C)

Beware of intermediate goods!
ais total spending by households on g\&s.
Note on housing costs:
For renters, consumption includes rent payments.
For homeowners, consumption includes the imputed rental value of the house, but not the purchase price or mortgage payments.

Investment (I)

is total spending on goods that will be used in the future to produce more goods.
includes spending on
capital equipment (e.g., machines, tools) structures (factories, office buildings, houses) inventories (goods produced but not yet, sold)

Government Purchases (G)

ais all spending on the g\&s purchased by govt at the federal, state, and local levels.
Qa excludes transfer payments, such as Social Security or unemployment insurance benefits.
They are not purchases of gds.

Net Exports (NX)

(aNX = exports - imports
Exports represent foreign spending on the economy's g\&s.
almports are the portions of C, I, and G that are spent on g\&s produced abroad.
Adding up all the components of GDP. gives:

$$
\mathbf{Y}=\mathbf{C}+\mathbf{I}+\mathbf{G}+\mathbf{N X}
$$

Real versus Nominal GDP

Inflation can distort economic variables like GDP, so we have two versions of GDP:
One is corrected for inflation, the other is not.
Nominal GDP values output using current prices. It is not corrected for inflation.
R Real GDP values output using the prices of a base year. Only the change in amounts produced are calculated. Real GDP is corrected for inflation.

The Consumer Price Index (CPI)

\&ameasures the typical consumer's cost of living
othe basis of cost of living adjustments (COLAs) in many contracts and in Social Security.

How the CPI Is Calculated

Fix the "basket."
The Bureau of Labor Statistics (BLS) surveys consumers to determine what's in the typical consumer's "shopping basket."
Find the prices.
The BLS collects data on the prices of all the goods in the basket.
Compute the basket's cost.
Use the prices to compute the total cost of the basket.

Choose a base year and compute the index. The CPI in any year equals

> cost of basket in current year $100 \times$ cost of basket in base year

Compute the inflation rate.
The percentage change in the CPI from the preceding period.

Inflation rate

CPI this year - CPI last year CPI last year
x 100\%

year	price of pizza	price of latte	cost of basket
2007	$\$ 10$	$\$ 2.00$	$\$ 10 \times 4+\$ 2 \times 10=\$ 60$
2008	$\$ 11$	$\$ 2.50$	$\$ 11 \times 4+\$ 2.5 \times 10=\$ 69$
2009	$\$ 12$	$\$ 3.00$	$\$ 12 \times 4+\$ 3 \times 10=\$ 78$

Compute CPI in each year
2007: $100 \times(\$ 60 / \$ 60)=100$
2008: $100 \times(\$ 69 / \$ 60)=115$
2009: $100 \times(\$ 78 / \$ 60)=130$

Inflation rate:
$\left\{\begin{array}{l}15 \%=\frac{115-100}{100} \times 100 \% \\ 13 \%=\frac{130-115}{115} \times 100 \%\end{array}\right.$

ACTIVELEARNING 1 Calculate the CPI

CPI basket:
$\{10$ lbs beef, 20 lbs chicken\}

The CPI basket cost $\$ 120$ in 2004, the base year.

	price of beef	price of chicken
2004	$\$ 4$	$\$ 4$
2005	$\$ 5$	$\$ 5$
2006	$\$ 9$	$\$ 6$

A. Compute the CPI in 2005.
B. What was the CPI inflation rate from 2005-2006?

ACTIVELEARNINGI

Answers

CPI basket:
$\{10 \mathrm{lbs}$ beef, 20 lbs chicken\}

The CPI basket cost $\$ 120$ in 2004, the base year.

	price of beef	price of chicken
2004	$\$ 4$	$\$ 4$
2005	$\$ 5$	$\$ 5$
2006	$\$ 9$	$\$ 6$

A. Compute the CPI in 2005:

Cost of CPI basket in 2005

$$
=(\$ 5 \times 10)+(\$ 5 \times 20)=\$ 150
$$

$C P /$ in $2005=100 \times(\$ 150 / \$ 120)=125$

ACTIVELEARNINGI

Answers

CPI basket:
$\{10 \mathrm{lbs}$ beef,
20 lbs chicken\}
The CPI basket cost $\$ 120$ in 2004, the base year.

	price of beef	price of chicken
2004	$\$ 4$	$\$ 4$
2005	$\$ 5$	$\$ 5$
2006	$\$ 9$	$\$ 6$

B. What was the inflation rate from 2005-2006?

Cost of CPI basket in 2006

$$
=(\$ 9 \times 10)+(\$ 6 \times 20)=\$ 210
$$

CPI in $2006=100 \times(\$ 210 / \$ 120)=175$
CPl inflation rate $=(175-125) / 125=40 \%$

The formula used to calculate the inflation rate is:

Inflation rate =
CPI Year 2 - CPI Year 1
$\times 100$
CPI Year 1

Comparing Dollar Figures from Different Times

Example: the minimum wage
\$1.15 in Dec 1964
$\$ 5.85$ in Dec 2007

$\$ 7.25$ in Dec 2009

Did min wage have more purchasing power in
Dec 1964 or Dec 2007?
a To compare, use CPI to convert 1964 figure into "today's dollars"...

Amount in today's $=$ in year \boldsymbol{T} dollars
 Amount dollars

Price level today
Price level in year \boldsymbol{T}

In our example, year $T=12 / 1964$, "today" $=12 / 2007$
Min wage = \$1.15 in year T
CPI $=31.3$ in year $T, C P I=211.7$ today
The minimum wage

$$
=\$ 1.15 \times \frac{211.7}{31.3}
$$ 1972, which paid a salary of $\$ 7,000$. What is this salary worth in 2007 dollars?

CPI in $1972=41.8$
CPI in $2007=195$
Value in $2007=1972$ salary \times (CPI in 2005/CPI in 1972)
Value in $2007=\$ 7,000(207 / 41.8)$
$=\$ 7,000 \times 4.95=\$ 34,650$

Real vs. Nominal Interest Rates

The nominal interest rate: the interest rate not corrected for inflation the rate of growth in the dollar value of a deposit or debt
The real interest rate: corrected for inflation
 the rate of growth in the purchasing power of a deposit or debt
eal internessir pate
= (nominal inter'esti rate) - (inflarion rare) the."

Real vs. Nominal Interest Rates

Example:

Deposit $\$ 1,000$ for one year.
a Nominal interest rate is 4.9\%.
a So you expect to have \$1,049.00 next year
a During that year, inflation is 3.5%. (it takes $\$ 35$ more to get the same stuff, so you only gained \$14)
a Real interest rate
$=$ Nominal interest rate - Inflation
$=4.9 \%-3.5 \%=1.4 \%$
The purchasing power of the $\$ 1000$ deposit has grown 1.4\%.

Labor Force Statistics

BLS divides population into 3 groups:
Employed: paid employees, self-employed, and unpaid workers in a family business
Unemployed: people not working who have looked for work during previous 4 weeks
Not in the labor force: everyone else
The labor force is the total \# of workers, including the employed and unemployed.

Unemployment rate ("u-rate"):

\% of the labor force that is unemployed

$$
\text { u-rate } \quad=100 \mathrm{x}
$$

\# of unemployed
labor force

Labor force participation rate:

\% of the adult population that is in the labor force

$$
\begin{array}{llc}
\text { labor force participation } \\
\text { rate } & =100 x & \text { adult population force }
\end{array}
$$

Adult population of the U.S. by group, June 2008

\# of employed	145.9 million
\# of unemployed	8.5 million
not in labor force	79.2 million

ACTIVELEARNING1

 AnswersLicoriorce = meloyed unemployed

$$
\begin{aligned}
& =140905 \\
& =154.4 \text { nillien }
\end{aligned}
$$

$$
\begin{aligned}
& =100 \times 05 / 154.4 \\
& =5.5 \%
\end{aligned}
$$

December 2009 barte was $10 \% 11$

ACTIVELEARNING 1

 AnswersPopulerion= laibor force r nort in labor forre
Lf partic rate : loor (choor
írice)/(populcrion)

$$
=100: 154.1 / 233.5
$$

Cyclical Unemployment vs. the Natural Rate

There's always some unemployment, though the u-rate fluctuates from year to year.
Natural rate of unemployment
the normal rate of unemployment around which the actual unemployment rate fluctuates
Cyclical unemployment
the deviation of unemployment from its natural rate
associated with business cycles, which we'll study in later chapters

Explaining the Natural Rate: An Overview

Even when the economy is doing well, there is always some unemployment, including:

Frictional unemployment
occurs when workers spend time searching for the jobs that best suit their skills and tastes short-term for most workers

Structural unemployment
occurs when there are fewer jobs than workers usually longer-term

The natural rate of unemployment consists of
frictional unemployment
It takes time to search for the right jobs
Occurs even if there are enough jobs to go around
structural unemployment
When wage is above eq'm, not enough jobs Due to min. wages, labor unions, efficiency wages
In later chapters, we will learn about cyclical unemployment, the short-term fluctuations in unemployment associated with business cycles.

